Tutorial on writing a
Raytracer in Common
Lisp

Part 2.1 ...continued
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So far...

® Minor changes to the linear algebra package,
® discussed
® the camera and the image plane as well as
® world- and view-coordinates,
® asdf’ed and also

® implemented parts of the camera, the scene
and the object superclass




Yet to do...

® small corrections regarding the camera and
the scene,

® discuss intersections of
® a ray and a sphere as well as those of
® a ray and a cube and

® eventually finish the actual implementation of
this tutorial’s part 2.1.




View coordinates
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World- vs.View-Coordinates
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The Image Plane
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Ray-Sphere-Intersection

A sphere is described by the equation
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Let ¢ be the center of the sphere.
=(x—c)}P-r"=0

Also, let 7, be the origin of the intersecting ray and rgq be it’s direction.
Replacing  with 7, + ¢ - 74 then yields
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Solving for ¢ by using the quadratic formula
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finally provides
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Ray-Plane-Intersection

All points on a plane can be expressed via a linear combination of
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Setting the plane’s equation equal to the ray’s equation gives

(") =r +t-r
v T e 1d

U
v | =T, — Po
t

Multiplying by the inverse of the matrix yields
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...suitable for (planar) rectangular and triangular faces...




Cramer’s Rule

According to Cramer’s rule, the inverse of a given matrix A can be determined
as follows:

—1 __ adj(A)
A= det(A)

Let A € R3*3 be a non-singular matrix
A=

It’s cofactor matrix C' computes to

et — fh fg—di dh—eg
C=\|ch—bi ai—cg bg—ah],
bf —ce cd—af ae—bd

et — fh ch—bi bf —ce
adj(A)=C' = | fg—di ai—cg cd—af
dh —eqg bg—ah ae—bd




Preview of Part 2.2

» transformations (rotation, scaling,
translation),

» axis-alighed bounding-boxes,
» the Blinn-Phong shading model and

» recursive raytracing.




